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Unit – I 

Mathematical Logic 
INTRODUCTION  

Proposition: A proposition or statement is a declarative sentence which is either 
true or false but not both. The truth or falsity of a proposition is called its truth-value. 

These two values ‗true‘ and ‗false‘ are denoted by the symbols T and F 
respectively. Sometimes these are also denoted by the symbols 1 and 0 respectively. 

Example 1: Consider the following sentences: 
1. Delhi is the capital of India.  
2. Kolkata is a country.  
3. 5 is a prime number.  
4. 2 + 3 = 4.  

These are propositions (or statements) because they are either true of false. 
Next consider the following sentences: 
5. How beautiful are you?  
6. Wish you a happy new year  
7. x + y = z  
8. Take one book.  

These are not propositions as they are not declarative in nature, that is, they do not 
declare a definite truth value T or F. 

Propositional Calculus is also known as statement calculus. It is the branch of 
mathematics that is used to describe a logical system or structure. A logical system 
consists of (1) a universe of propositions, (2) truth tables (as axioms) for the logical 
operators and (3) definitions that explain equivalence and implication of propositions. 
 

Connectives 

The words or phrases or symbols which are used to make a proposition by two or more 
propositions are called logical connectives or simply connectives. There are five basic 
connectives called negation, conjunction, disjunction, conditional and biconditional. 
Negation 

The negation of a statement is generally formed by writing the word ‗not‘ at a 
proper place in the statement (proposition) or by prefixing the statement with the phrase 
‗It is not the case that‘. If p denotes a statement then the negation of p is written as p and 
read as ‗not p‘. If the truth value of p is T then the truth value of p is F. Also if the truth 
value of p is F then the truth value of p is T. 

                Table 1. Truth table for negation 
p ¬p 

T 
F 

F 
T 
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Example 2: Consider the statement p: Kolkata is a city. Then ¬p: Kolkata is not a city. 
Although the two statements ‗Kolkata is not a city‘ and ‗It is not the case that Kolkata is a 

city‘ are not identical, we have translated both of them by p. The reason is that both these 
statements have the same meaning. 
 

Conjunction 
The conjunction of two statements (or propositions) p and q is the statement p  q which is 

read as ‗p and q‘. The statement p  q has the truth value T whenever both p and q have the truth 
value T. Otherwise it has truth value F. 
 

Table 2. Truth table for conjunction 
 

p q p  q 

T 
T 
F 
F 

T 
F 
T 
F 

T 
F 
F 
F 

 
Example 3: Consider the following statements p : It is 

raining today. 
q : There are 10 chairs in the room. 

Then p  q : It is raining today and there are 10 chairs in the room. 
Note: Usually, in our everyday language the conjunction ‗and‘ is used between two statements 
which have some kind of relation. Thus a statement ‗It is raining today and 1 + 1 = 2‘ sounds odd, 
but in logic it is a perfectly acceptable statement formed from the statements ‗It is raining today‘ 
and ‗1 + 1 = 2‘. 
Example 4: Translate the following statement: 

‗Jack and Jill went up the hill‘ into symbolic form using conjunction. 
Solution: Let p : Jack went up the hill, q : Jill went up the hill. 

Then the given statement can be written in symbolic form as p  q. 
 
Disjunction 

The disjunction of two statements p and q is the statement p  q which is read as ‗p or q‘. 
The statement p  q has the truth value F only when both p and q have the truth value F. Otherwise 
it has truth value T. 
 

Table 3: Truth table for disjunction 
 

p q p  q 
   

T T T 
T F T 
F T T 
F F F 

   
 

Example 5: Consider the following statements p : I shall go to the game. 
 

q : I shall watch the game on television. 
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Then p  q : I shall go to the game or watch the game on television. 
 
Conditional proposition 

If p and q are any two statements (or propositions) then the statement p → q which is read as, 
‗If p, then q‘ is called a conditional statement (or proposition) or implication and the connective 
is the conditional connective. 
 

The conditional is defined by the following table: 
 

Table 4. Truth table for conditional 
 

p q p → q 
   

T T T 
T F F 
F T T 
F F T 

   

 
In this conditional statement, p is called the hypothesis or premise or antecedent and q is 

called the consequence or conclusion. 
 

To understand better, this connective can be looked as a conditional promise. If the promise 
is violated (broken), the conditional (implication) is false. Otherwise it is true. For this reason, the 
only circumstances under which the conditional p → q is false is when p is true and q is false. 
 

Example 6: Translate the following statement: 
 

‘The crop will be destroyed if there is a flood’ into symbolic form using conditional 
connective. 

 
Solution: Let c : the crop will be destroyed; f : there is a flood. 
Let us rewrite the given statement as 
‗If there is a flood, then the crop will be destroyed‘. So, the symbolic form of the given 

statement is f → c. 
 

Example 7: Let p and q denote the statements:  
p : You drive over 70 km  per hour.  
q : You get a speeding ticket. 

 
Write the following statements into symbolic forms. 

 
(i) You will get a speeding ticket if you drive over 70 km per hour. 

 
(ii) Driving over 70 km per hour is sufficient for getting a speeding ticket. 

 
(iii) If you do not drive over 70 km per hour then you will not get a speeding ticket. 
(iv) Whenever you get a speeding ticket, you drive over 70 km per hour. 
Solution: (i) p → q  (ii) p → q  (iii)   p →  q  (iv) q → p. 

 
Notes: 1. In ordinary language, it is customary to assume some kind of relationship between 

the antecedent and the consequent in using the conditional. But in logic, the antecedent and the 
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consequent in a conditional statement are not required to refer to the same subject matter. For 
example, the statement ‗If I get sufficient money then I shall purchase a high-speed computer‘ 
sounds reasonable. On the other hand, a statement such as ‗If I purchase a computer then this pen is 
red‘ does not make sense in our conventional language. But according to the definition of 
conditional, this proposition is perfectly acceptable and has a truth-value which depends on the 
truth-values of the component statements. 
 

2. Some of the alternative terminologies used to express p → q (if p, then q) are the 
following: (i) p implies q 

 
(ii) p only if q (‗If p, then q‘ formulation emphasizes the antecedent, whereas ‗p only if q‘ 

formulation emphasizes the consequent. The difference is only stylistic.) 
 

(iii) q if p, or q when p. 
 

(iv) q follows from p, or q whenever p. 
 

(v) p is sufficient for q, or a sufficient condition for q is p. (vi) q is necessary for p, or a necessary 
condition for p is q. (vii) q is consequence of p. 

Converse, Inverse and Contrapositive 
If P  Q is a conditional statement, then 

(1). Q  P is called its converse 
(2). ¬P  ¬Q is called its inverse 
(3). ¬Q  ¬P is called its contrapositive. 

Truth table for Q  P (converse of P  Q) 

P Q Q  P 
T T T 

T F T 

F T F 

F F T 
Truth table for ¬P  ¬Q (inverse of P  Q) 

P Q ¬P ¬Q ¬P  ¬Q 

T T F F T 

T F F T T 

F T T F F 

F F T T T 
Truth table for ¬Q  ¬P (contrapositive of P  Q) 
 

 P Q ¬Q ¬P ¬Q  ¬P   

 T T F F T   

 T F T F F   

 F T F T T   

 F F T T T   
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Example: Consider the statement 
P : It rains. 
Q: The crop will grow. 

The implication P  Q states that 
R: If it rains then the crop will grow. 

The converse of the implication P  Q, namely Q  P sates that S: If 
the crop will grow then there has been rain. 

The inverse of the implication P  Q, namely ¬P  ¬Q sates that 
U: If it does not rain then the crop will not grow. 

The contraposition of the implication P  Q, namely ¬Q  ¬P states that T : If 
the crop do not grow then there has been no rain. 

 
Example 9: Construct the truth table for (p → q)  (q →p) 

p q p → q q → p (p → q)  (q → p) 
     

T T T T T 
T F F T F 
F T T F F 
F F T T T 

 
Biconditional proposition 

If p and q are any two statements (propositions), then the statement p  q which is read as ‗p if and 
only if q‘ and abbreviated as ‗p iff q‘ is called a biconditional statement and the connective is the 
biconditional connective. 

The truth table of p q is given by the following table:  
Table 6. Truth table for biconditional 

p q p q 
T T T 
T F F 
F T F 
F F T 

 
 

It may be noted that p q is true only when both p and q are true or when both p and q are 
false. Observe that p q is true when both the conditionals p → q and q → p are true, i.e., the truth-
values of (p → q)  (q → p), given in Ex. 9, are identical to the truth-values of p q defined here. 
 

Note: The notation p ↔ q is also used instead of p q. 
 

TAUTOLOGY AND CONTRADICTION  

 

Tautology: A statement formula which is true regardless of the truth values of the statements 
which replace the variables in it is called a universally valid formula or a logical truth or a 
tautology. 
 

Contradiction: A statement formula which is false regardless of the truth values of the 
statements which replace the variables in it is said to be a contradiction. 

Contingency: A statement formula which is neither a tautology nor a contradiction is known 
as a contingency. 
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Substitution Instance 
A formula A is called a substitution instance of another formula B if A can be obtained form 
B by substituting formulas for some variables of B, with the condition that the same formula 
is substituted for the same variable each time it occurs.  

Example: Let B : P  (J  P ). 

Substitute R S for P in B, we get 

(i) : (R   S)  (J  (R   S)) 

Then A is a substitution instance of B. 

Note that (R  S)  (J P) is not a substitution instance of B because the variables 

P in J  P was not replaced by R  S. 

 

Equivalence of Formulas 
Two formulas A and B are said to equivalent to each other if and only if A  B is a 
tautology. 

If A B is a tautology, we write A ⇔ B which is read as A is equivalent to B. 

Note : 1. ⇔ is only symbol, but not connective. 

2. A   B is a tautology if and only if truth tables of A and B are the same. 
3. Equivalence relation is symmetric and transitive. 

 
Method I. Truth Table Method: One method to determine whether any two statement 
formulas are equivalent is to construct their truth tables. 

Example: Prove P  Q ⇔ ¬(¬P  ¬Q). 

Solution: 

P Q P  Q ¬P ¬Q ¬P  ¬Q ¬(¬P  ¬Q) (P  Q)  ⇔ ¬(¬P  ¬Q) 

T T T F F F T T 

T F T F T F T T 

F T T T F F T T 

F F F T T T F T 
        

As P  Q ¬(¬P  ¬Q) is a tautology, then P  Q ⇔ ¬(¬P  ¬Q). 

Example: Prove (P  Q) ⇔ (¬P  Q). 

Solution: 
 

P Q P  Q ¬P ¬P  Q (P  Q)   (¬P  Q) 

T T T F T T 

T F F F F T 

F T T T T T 

F F T T T T 
      

 

As (P  Q) (¬P  Q) is a tautology then (P  Q) ⇔ (¬P  Q). 
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Equivalence Formulas: 
  1. Idempotent laws: 

 (a) P  P ⇔ P (b) P  P ⇔ P 

2. Associative laws:  

 (a) (P  Q)  R ⇔ P  (Q  R) (b) (P  Q)  R ⇔ P  (Q  R) 

3. Commutative laws:  

 (a) P  Q ⇔ Q  P (b) P  Q ⇔ Q  P 

4. Distributive laws: 

 P  (Q  R) ⇔ (P  Q)  (P  R)  P  (Q  R) ⇔ (P  Q)  (P  R) 

5. Identity laws: 

 (a) (i) P  F ⇔ P (ii) P  T ⇔ T  

 (b) (i) P  T ⇔ P (ii) P  F ⇔ F  
6. Component laws:   

 (a) (i) P  ¬P ⇔ T (ii) P  ¬P ⇔ F . 

 (b) (i) ¬¬P ⇔ P (ii) ¬T ⇔ F , ¬F ⇔ T  
7. Absorption laws:   

 (a) P  (P  Q) ⇔ P (b) P  (P  Q) ⇔ P  
8. Demorgan‘s laws:   

 (a) ¬(P  Q) ⇔ ¬P  ¬Q (b) ¬(P  Q) ⇔ ¬P  ¬Q  
 
Method II. Replacement Process: Consider a formula A : P  (Q  R). The formula Q  R is a 

part of the formula A. If we replace Q  R by an equivalent formula ¬Q R in A, we get another 

formula B : P  (¬Q R). One can easily verify that the formulas A and B are equivalent to each 

other. This process of obtaining B from A as the replacement process. 
 

Example: Prove that P  (Q  R) ⇔ P  (¬Q  R) ⇔ (P  Q)  R.(May. 2010) 

Solution: P  (Q  R) ⇔ P  (¬Q  R) [  Q  R ⇔ ¬Q  R] 

⇔ ¬P  (¬Q  R)   [  P  Q ⇔ ¬P  Q] 

⇔ (¬P  ¬Q)  R  [by Associative laws] 

⇔ ¬(P  Q)  R    [by De Morgan‘s laws] 

⇔ (P  Q)  R[  P  Q ⇔ ¬P  Q]. 

Example: Prove that (P  Q)  (R  Q) ⇔ (P  R)  Q. 

Solution:                 (P  Q)  (R  Q) ⇔ (¬P  Q)  (¬R  Q) 

⇔ (¬P  ¬R)  Q ⇔ 

¬(P  R)  Q ⇔ P  

R  Q 
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Example: Prove that P  (Q  P ) ⇔ ¬P  (P  Q). 

Solution:  P  (Q  P ) ⇔ ¬P  (Q  P )  

⇔ ¬P  (¬Q  P )  

⇔ (¬P  P )  ¬Q  

⇔ T  ¬Q 

⇔ T 

and 

¬P  (P  Q) ⇔ ¬(¬P )  (P  Q) 

⇔ P  (¬P  Q) ⇔ 

(P  ¬P )  Q ⇔ T 

 Q 

⇔ T 

So, P  (Q  P ) ⇔ ¬P  (P  Q). 

***Example: Prove that (¬P  (¬Q  R))  (Q  R)  (P  R) ⇔ R.                     (Nov. 2009) 

Solution: 

(¬P  (¬Q  R))  (Q  R)  (P  R) 

⇔ ((¬P  ¬Q)  R)  ((Q  P )  R) [Associative and Distributive laws] 

⇔ (¬(P  Q)  R)  ((Q  P )  R) [De Morgan‘s laws] 

⇔ (¬(P  Q)  (P  Q))  R [Distributive laws] 

⇔ T  R [  ¬P  P ⇔ T ] 

⇔ R 

**Example: Show ((P  Q)  ¬(¬P  (¬Q  ¬R)))  (¬P  ¬Q)  (¬P  ¬R) is tautology. 

Solution: By De Morgan‘s laws, we have 

¬P  ¬Q ⇔ ¬(P  Q) 

¬P  ¬R ⇔ ¬(P  R) 

Therefore 

(¬P  ¬Q)  (¬P  ¬R) ⇔ ¬(P  Q)  ¬(P  R) 

⇔ ¬((P  Q)  (P  R)) 

Also 

¬(¬P  (¬Q  ¬R)) ⇔ ¬(¬P  ¬(Q  R)) 

⇔ P  (Q  R) 

⇔ (P  Q)  (P  R) 

Hence ((P  Q)  ¬(¬P  (¬Q  ¬R))) ⇔ (P  Q)  (P  Q)  (P  R) 

⇔ (P  Q)  (P  R) 

 

Thus ((P  Q)  ¬(¬P  (¬Q  ¬R)))  (¬P  ¬Q)  (¬P  ¬R) 
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⇔ [(P  Q)  (P  R)]  ¬[(P  Q)  (P  R)] 

⇔ T 

Hence the given formula is a tautology. 

Example: Show that (P  Q)  (P  Q) is a tautology.     (Nov. 2009) 

Solution: (P  Q)  (P  Q) ⇔ ¬(P  Q)  (P  Q) [  P  Q ⇔ ¬P  Q] 

⇔ (¬P  ¬Q)  (P  Q) [by De Morgan‘s laws] 

⇔ (¬P  P )  (¬Q  Q)  [by Associative laws and commutative 

laws] 

⇔ (T  T )[by negation laws] 

⇔ T 

Hence, the result. 
 
Example: Write the negation of the following statements. 

(a). Jan will take a job in industry or go to graduate school. 
(b). James will bicycle or run tomorrow. 
(c). If the processor is fast then the printer is slow. 

Solution: (a). Let P : Jan will take a job in industry. 
Q: Jan will go to graduate school. 

The given statement can be written in the symbolic as P  Q. 

The negation of P  Q is given by ¬(P  Q). 

¬(P  Q) ⇔ ¬P  ¬Q. 

¬P  ¬Q: Jan will not take a job in industry and he will not go to graduate school. 

(b). Let P : James will bicycle. 
Q: James will run tomorrow. 

The given statement can be written in the symbolic as P  Q. 

The negation of P  Q is given by ¬(P  Q). 

¬(P  Q) ⇔ ¬P  ¬Q. 

¬P  ¬Q: James will not bicycle and he will not run tomorrow. 

(c). Let P : The processor is fast. 
Q: The printer is slow. 

The given statement can be written in the symbolic as P  Q. 
 

The negation of P  Q is given by ¬(P  Q). 

¬(P  Q) ⇔ ¬(¬P  Q) ⇔ P  ¬Q. 

P  ¬Q: The processor is fast and the printer is fast. 

Example: Use Demorgans laws to write the negation of each statement. 
(a). I want a car and worth a cycle. 
(b). My cat stays outside or it makes a mess. 
(c). I‘ve fallen and I can‘t get up. 
(d). You study or you don‘t get a good grade. 

Solution:    (a). I don‘t want a car or not worth a cycle. 
(b). My cat not stays outside and it does not make a mess. 
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(c). I have not fallen or I can get up. 
(d). You can not study and you get a good grade. 

Exercises: 1. Write the negation of the following statements. 
(a). If it is raining, then the game is canceled. 
(b). If he studies then he will pass the examination. 

 Are (p  q)  r and p  (q  r) logically equivalent? Justify your answer by using the 
rules of logic to simply both expressions and also by using truth tables. Solution: (p  q)  
r and p  (q  r) are not logically equivalent because 
Method I: Consider 

(p  q)  r ⇔ (¬p  q)  r 

⇔ ¬(¬p  q)  r ⇔ 

(p  ¬q)  r 

⇔ (p  r)  (¬q  r) 

and 

p  (q  r) ⇔ p  (¬q  r) 

⇔ ¬p  (¬q  r) ⇔ 

¬p  ¬q  r. 

 
Method II: (Truth Table Method) 

p q r p  q (p  q)  r q  r p  (q  r) 

T T T T  T T T 

T T F T  F F F 

T F T F  T T T 

T F F F  T T T 

F T T T  T T T 

F T F T  F F T 

F F T T  T T T 

F F F T  F T T 
 
Here the truth values (columns) of (p  q)  r and p  (q  r) are not identical. 

 
 Consider the statement: ‖If you study hard, then you will excel‖. Write its converse, 
contra positive and logical negation in logic. 

 

Duality Law 

Two formulas A and A∗ are said to be duals of each other if either one can be obtained from the 

other by replacing  by  and  by . The connectives  and  are called duals of each other. If the 

formula A contains the special variable T or F , then A∗, its dual is obtained by replacing T by F and 

F by T in addition to the above mentioned interchanges. 
Example: Write the dual of the following formulas: 
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(i). (P  Q)  R (ii). (P  Q)  T (iii). (P  Q)  (P  ¬(Q  ¬S)) 

Solution: The duals of the formulas may be written as 

(i). (P  Q)  R (ii). (P  Q)  F (iii). (P  Q)  (P  ¬(Q  ¬S)) 

Result 1: The negation of the formula is equivalent to its dual in which every variable 
is replaced by its negation. 
We can prove 

¬A(P1, P2, ..., Pn) ⇔ A∗(¬P1, ¬P2, ..., ¬Pn) 

Example: Prove that (a). ¬(P  Q)  (¬P  (¬P  Q)) ⇔ (¬P  Q) 

(b). (P  Q)  (¬P  (¬P  Q)) ⇔ (¬P  Q) 

Solution: (a).¬(P  Q)  (¬P  (¬P  Q)) ⇔ (P  Q)  (¬P  (¬P  Q))  [  P  Q ⇔ ¬P  Q] 

⇔ (P  Q)  (¬P  Q)  

⇔ (P  Q)  ¬P  Q  

⇔ ((P  Q)  ¬P ))  Q 

⇔ ((P  ¬P )  (Q  ¬P ))  Q 

⇔ (T  (Q  ¬P ))  Q 

⇔ (Q  ¬P )  Q 

⇔ Q  ¬P 

⇔ ¬P  Q 

(b). From (a) 

(P  Q)  (¬P  (¬P  Q)) ⇔ ¬P  Q 

Writing the dual 

(P  Q)  (¬P  (¬P  Q)) ⇔ (¬P  Q) 

 

Tautological Implications 
A statement formula A is said to tautologically imply a statement B if and only if A  B 
is a tautology. 

In this case we write A ⇒ B, which is read as ‘A implies B‘. 

Note: ⇒ is not a connective, A ⇒ B is not a statement formula. 

 A ⇒ B states that A  B is tautology. 

Clearly A ⇒ B guarantees that B has a truth value T whenever A has the truth value T . 

One can determine whether A ⇒ B by constructing the truth tables of A and B in the same manner as 

was done in the determination of A ⇔ B. Example: Prove that (P  Q) ⇒ (¬Q  ¬P ). 
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Solution: 
 

P Q ¬P ¬Q P  Q ¬Q  ¬P (P  Q)  (¬Q  ¬P ) 

T T F F T T T 

T F F T F F T 

F T T F T T T 

F F T T T T T 
       

 
Since all the entries in the last column are true, (P  Q)  (¬Q  ¬P ) is a 
tautology. 

Hence (P  Q) ⇒ (¬Q  ¬P ). 

 In order to show any of the given implications, it is sufficient to show that an 
assignment of the truth value T to the antecedent of the corresponding condi- 

 
tional leads to the truth value T for the consequent. This procedure guarantees that the 
conditional becomes tautology, thereby proving the implication. 

 

Example: Prove that ¬Q  (P  Q) ⇒ ¬P . 

Solution: Assume that the antecedent ¬Q  (P  Q) has the truth value T , then both ¬Q and P  

Q have the truth value T , which means that Q has the truth value F , P  Q has the truth value T . 
Hence P must have the truth value F . 

Therefore the consequent ¬P must have the truth value T. 

¬Q  (P  Q) ⇒ ¬P . 

Another method to show A ⇒ B is to assume that the consequent B has the truth value F and then 

show that this assumption leads to A having the truth value F . Then A  B must have the truth 
value T . 

Example: Show that ¬(P  Q) ⇒ P . 

Solution: Assume that P has the truth value F . When P has F , P  Q has T , then ¬(P  Q) has F 
. Hence ¬(P  Q)  P has T . 

¬(P  Q) ⇒ P 

 

 Other Connectives 
 
We introduce the connectives NAND, NOR which have useful applications in the design of 
computers. 
NAND: The word NAND is a combination of ‘NOT‘ and ‘AND‘ where ‘NOT‘ stands for negation 
and ‘AND‘ for the conjunction. It is denoted by the symbol . 

If P and Q are two formulas then 

P  Q ⇔ ¬(P  Q) 

The connective  has the following equivalence: 

 P  P ⇔ ¬(P  P ) ⇔ ¬P  ¬P ⇔ ¬P . 
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 (P  Q)  (P  Q) ⇔ ¬(P  Q) ⇔ ¬(¬(P  Q)) ⇔ P  Q. 

 (P  P )  (Q  Q) ⇔ ¬P  ¬Q ⇔ ¬(¬P  ¬Q) ⇔ P  Q. 

NAND is Commutative: Let P and Q be any two statement formulas. 

(P  Q) ⇔ ¬(P  Q) 

⇔ ¬(Q  P ) ⇔ 

(Q  P ) 

 NAND is commutative. 

NAND is not Associative: Let P , Q and R be any three statement formulas. 

Consider  (Q  R) ⇔ ¬(P  (Q  R)) ⇔ ¬(P  (¬(Q  R))) 

⇔ ¬P  (Q  R)) 

(P  Q)  R ⇔ ¬(P  Q)  R 

⇔ ¬(¬(P  Q)  R) ⇔ 

(P  Q)  ¬R 

Therefore the connective  is not associative. 
NOR: The word NOR is a combination of ‘NOT‘ and ‘OR‘ where ‘NOT‘ stands for negation and 

‗OR‘ for the disjunction. It is denoted by the symbol . 
If P and Q are two formulas then 

P  Q ⇔ ¬(P  Q) 

The connective  has the following equivalence: 

 P  P ⇔ ¬(P  P ) ⇔ ¬P  ¬P ⇔ ¬P . 

 (P  Q)  (P  Q) ⇔ ¬(P  Q) ⇔ ¬(¬(P  Q)) ⇔ P  Q. 

 (P  P )  (Q  Q) ⇔ ¬P  ¬Q ⇔ ¬(¬P  ¬Q) ⇔ P  Q. 

NOR is Commutative: Let P and Q be any two statement formulas. 

(P  Q) ⇔ ¬(P  Q) 

⇔ ¬(Q  P ) ⇔ 

(Q  P ) 

 NOR is commutative. 

NOR is not Associative: Let P , Q and R be any three statement formulas. Consider 

  P  (Q  R) ⇔ ¬(P  (Q  R))  

        ⇔ ¬(P  (¬(Q  R))) 

⇔ ¬P  (Q  R) 

(P  Q)  R ⇔ ¬(P  Q)  R 

⇔ ¬(¬(P  Q)  R) ⇔ 

(P  Q)  ¬R 

Therefore the connective  is not associative. 
 

Evidently, P  Q and P  Q are duals of each other. 
Since 
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¬(P  Q) ⇔ ¬P  ¬Q 

¬(P  Q) ⇔ ¬P  ¬Q. 

Example: Express P  Q interms of  only. 
Solution: 

  Q ⇔ ¬(P  Q) 

⇔ (P  Q)  (P  Q) 

⇔ [(P  P )  (Q  Q)]  [(P  P )  (Q  Q)] 

Example: Express P  Q interms of  only. (May-2012) 

Solution:    Q ⇔ ¬(P  Q) 

⇔ (P  Q)  (P  Q) 

⇔ [(P  P )  (Q  Q)]  [(P  P )  (Q  Q)] 

Truth Tables 
Example: Show that (A ⊕ B)  (A  B) ⇔ (A  B). (May-2012) 

Solution: We prove this by constructing truth table. 

A B A ⊕ B A  B (A ⊕ B)  (A  B) A  B 

T T F F F F 

T F T F T T 

F T T F T T 

F F F T T T 

As columns (A ⊕ B)  (A  B) and (A  B) are identical. 

 (A ⊕ B)  (A  B) ⇔ (A  B). 

 

Normal Forms 
If a given statement formula A(p1, p2, ...pn) involves n atomic variables, we have 2

n
 

possible combinations of truth values of statements replacing the variables. 
The formula A is a tautology if A has the truth value T for all possible assignments of the 

truth values to the variables p1, p2, ...pn and A is called a contradiction if A has the truth 
value F for all possible assignments of the truth values of the n variables. A is said to be satis 

able if A has the truth value T for atleast one combination of truth values assigned to p1, p2, 

...pn. 
The problem of determining whether a given statement formula is a Tautology, or a 

Contradiction is called a decision problem. 
The construction of truth table involves a finite number of steps, but the construc-tion 

may not be practical. We therefore reduce the given statement formula to normal form and 
find whether a given statement formula is a Tautology or Contradiction or atleast satisfiable. 

It will be convenient to use the word ‖product‖ in place of ‖conjunction‖ and ‖sum‖ in 
place of ‖disjunction‖ in our current discussion. 
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A product of the variables and their negations in a formula is called an elementary 
product. Similarly, a sum of the variables and their negations in a formula is called an 
elementary sum. 

Let P and Q be any atomic variables. Then P , ¬P Q, ¬Q P  ¬P , P  ¬P , and Q  ¬P 

are some examples of elementary products. On the other hand, P , ¬P  Q, ¬Q  P  ¬P , P 

 ¬P , and Q  ¬P are some examples of elementary sums. 

Any part of an elementary sum or product which is itself an elementary sum or product is 

called a factor of the original elementary sum or product. Thus ¬Q,  ¬P , and ¬Q  P are 

some of the factors of ¬Q  P  ¬P . 

 

Disjunctive Normal Form (DNF) 
 
A formula which is equivalent to a given formula and which consists of a sum of elementary 
products is called a disjunctive normal form of the given formula. 

 
Example: Obtain disjunctive normal forms of 

(a) P  (P  Q); (b) ¬(P  Q)  (P  Q). 

Solution: (a) We have 

P  (P  Q) ⇔ P  (¬P  Q) 

⇔ (P  ¬P )  (P  Q) 

(b) ¬(P  Q) (P  Q) 

⇔ (¬(P  Q)  (P  Q))  ((P  Q)  ¬(P  Q)) [using 

R  S ⇔ (R  S)  (¬R  ¬S) 

⇔ ((¬P  ¬Q)  (P  Q))  ((P  Q)  (¬P  ¬Q)) 

⇔ (¬P  ¬Q  P  Q)  ((P  Q)  ¬P )  ((P  Q)  ¬Q) 

⇔ (¬P  ¬Q  P  Q)  (P  ¬P )  (Q  ¬P )  (P  ¬Q)  (Q  ¬Q) 

 
which is the required disjunctive normal form. 

 
Note: The DNF of a given formula is not unique. 

 

Conjunctive Normal Form (CNF) 
 
A formula which is equivalent to a given formula and which consists of a product of elementary 
sums is called a conjunctive normal form of the given formula. 
 
 The method for obtaining conjunctive normal form of a given formula is similar to the one 
given for disjunctive normal form. Again, the conjunctive normal form is not unique. 
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Example: Obtain conjunctive normal forms of 

(a) P  (P  Q); (b) ¬(P  Q)  (P  Q). 

Solution: (a). P  (P  Q) ⇔ P  (¬P  Q) 

(b).¬(P  Q)  (P  Q) 

⇔ (¬(P  Q)  (P  Q))  ((P  Q)  ¬(P  Q))  

⇔ ((P  Q)  (P  Q))  (¬(P  Q)  ¬(P  Q)) 

⇔ [(P  Q  P )  (P  Q  Q)]  [(¬P  ¬Q)  (¬P  ¬Q)] 

⇔ (P  Q  P )  (P  Q  Q)  (¬P  ¬Q  ¬P )  (¬P  ¬Q  ¬Q) 

 
Note: A given formula is tautology if every elementary sum in CNF is tautology. 

Example: Show that the formula Q  (P  ¬Q)  (¬P  ¬Q) is a tautology. 

Solution: First we obtain a CNF of the given formula. 

Q  (P  ¬Q)  (¬P  ¬Q) ⇔ Q  ((P  ¬P )  ¬Q) 

⇔ (Q  (P  ¬P ))  (Q  ¬Q) 

⇔ (Q  P  ¬P )  (Q  ¬Q) 

Since each of the elementary sum is a tautology, hence the given formula is tautology. 

 

Principal Disjunctive Normal Form 

In this section, we will discuss the concept of principal disjunctive normal form (PDNF). 
 
Minterm: For a given number of variables, the minterm consists of conjunctions in which each 
statement variable or its negation, but not both, appears only once. 

Let P and Q be the two statement variables. Then there are 2
2
 minterms given by P  Q, P  ¬Q, 

¬P  Q, and ¬P  ¬Q. 

Minterms for three variables P , Q and R are P  Q  R, P  Q  ¬R, P  ¬Q  R,P  ¬Q  ¬R, ¬P 

 Q  R, ¬P  Q  ¬R, ¬P  ¬Q  R and ¬P  ¬Q  ¬R. From the truth tables of these minterms 

of P and Q, it is clear that 
 

P Q P  Q P  ¬Q ¬P  Q ¬P  ¬Q 

T T T F F F 

T F F T F F 

F T F F T F 

F F F F F T 
      

 
(i). no two minterms are equivalent 
(ii). Each minterm has the truth value T for exactly one combination of the truth values of the 
variables P and Q. 

Definition:  For a given formula, an equivalent formula consisting of disjunctions of minterms only 
is called the Principal disjunctive normal form of the formula. 
The principle disjunctive normal formula is also called the sum-of-products canonical form. 
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Methods to obtain PDNF of a given formula 
 

(a). By Truth table: 

(i). Construct a truth table of the given formula. 
(ii). For every truth value T in the truth table of the given formula, select the minterm which 

also has the value T for the same combination of the truth values of P and Q. 
(iii). The disjunction of these minterms will then be equivalent to the given formula. 

 
Example: Obtain the PDNF of P  Q. 
Solution: From the truth table of P  Q 

P Q P  Q Minterm 

T T T P  Q 

T F F P  ¬Q 

F T T ¬P  Q 

F F T ¬P  ¬Q 

 

The PDNF of P  Q is (P  Q)  (¬P  Q)  (¬P  ¬Q). 

 P  Q ⇔ (P  Q)  (¬P  Q)  (¬P  ¬Q). 

Example: Obtain the PDNF for (P  Q)  (¬P  R)  (Q  R). 

Solution: 

P Q R Minterm P  Q ¬P  R Q  R (P  Q)  (¬P  R)  (Q  R) 

T T T P  Q  R T F T T 

T T F P  Q  ¬R T F F T 

T F T P  ¬Q  R F F F F 

T F F P  ¬Q  ¬R F F F F 

F T T ¬P  Q  R F T T T 

F T F ¬P  Q  ¬R F F F F 

F F T ¬P  ¬Q  R F T F T 

F F F ¬P  ¬Q  ¬R F F F F 
 
 

The PDNF of (P  Q)  (¬P  R)  (Q  R) is 

(P  Q  R)  (P  Q  ¬R)  (¬P  Q  R)  (¬P  ¬Q  R). 

 

(b). Without constructing the truth table: 
 

In order to obtain the principal disjunctive normal form of a given formula is con-
structed as follows: 
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(1). First replace , by their equivalent formula containing only ,  and ¬. 

(2). Next, negations are applied to the variables by De Morgan‘s laws followed by the 
application of distributive laws. 
(3). Any elementarily product which is a contradiction is dropped. Minterms are ob-tained in 
the disjunctions by introducing the missing factors. Identical minterms appearing in the 
disjunctions are deleted. 
 
Example: Obtain the principal disjunctive normal form of 

 (a) ¬P  Q; (b) (P  Q)  (¬P  R)  (Q  R). 

Solution: 

(a) ¬P  Q ⇔ (¬P  T )  (Q  T ) [  A  T ⇔ A] 

⇔ (¬P  (Q  ¬Q))  (Q  (P  ¬P )) [  P  ¬P ⇔ T ]  

⇔ (¬P  Q)  (¬P  ¬Q)  (Q  P )  (Q  ¬P ) 

[  P  (Q  R) ⇔ (P  Q)  (P  R) 

⇔ (¬P  Q)  (¬P  ¬Q)  (P  Q) [  P  P ⇔ P ] 

(b) (P  Q)  (¬P  R)  (Q  R) 

⇔ (P  Q  T )  (¬P  R  T )  (Q  R  T ) 

⇔ (P  Q  (R  ¬R))  (¬P  R  (Q  ¬Q))  (Q  R  (P  ¬P ))  

⇔ (P  Q  R)  (P  Q  ¬R)  (¬P  R  Q)(¬P  R  ¬Q) 

 (Q  R  P )  (Q  R  ¬P ) 

⇔ (P  Q  R)  (P  Q  ¬R)  (¬P  Q  R)  (¬P  ¬Q  R) 

 

 P  (P  Q) ⇔ P 

 P  (¬P  Q) ⇔ P  Q 

Solution: We write the principal disjunctive normal form of each formula and com-pare these 
normal forms. 

(a) P  (P  Q) ⇔ (P  T )  (P  Q) [  P  Q ⇔ P ] 

⇔ (P  (Q  ¬Q))  (P  Q) [  P  ¬P ⇔ T ] 

⇔ ((P  Q)  (P  ¬Q))  (P  Q) [by distributive laws] 

⇔ (P  Q)  (P  ¬Q) [  P  P ⇔ P ]  

which is the required PDNF. 

Now,   ⇔ P  T 

⇔ P  (Q  ¬Q) 

⇔ (P  Q)  (P  ¬Q) 

which is the required PDNF. 

Hence, P  (P  Q) ⇔ P . 
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(b) P  (¬P  Q) ⇔ (P  T )  (¬P  Q) 

⇔ (P  (Q  ¬Q))  (¬P  Q) 

⇔ (P  Q)  (P  ¬Q)  (¬P  Q) 

which is the required PDNF. 
 

Now, 

 P  Q ⇔ (P  T )  (Q  T )  

 ⇔ (P  (Q  ¬Q))  (Q  (P  ¬P ))  

 ⇔ (P  Q)  (P  ¬Q)  (Q  P )  (Q  ¬P )  

 ⇔ (P  Q)  (P  ¬Q)  (¬P  Q)  
which is the required PDNF.  

Hence, P  (¬P  Q) ⇔ P  Q.  
Example: Obtain the principal disjunctive normal form of  

 P  ((P  Q)  ¬(¬Q  ¬P )). (Nov. 2011) 

Solution: Using P  Q ⇔ ¬P  Q and De Morgan‘s law, we obtain  
 

  ((P  Q)  ¬(¬Q  ¬P )) ⇔ ¬P 

 ((¬P  Q)  (Q  P )) 

 

⇔ ¬P  ((¬P  Q  P )  (Q  Q  P )) ⇔ 

¬P  F  (P  Q) 

 

⇔ ¬P  (P  Q) 

 

⇔ (¬P  T )  (P  Q) 

 

⇔ (¬P  (Q  ¬Q))  (P  Q) 

 

⇔ (¬P  Q)  (¬P  ¬Q)  (P  Q) 

 

Hence (P  Q)  (¬P  Q)  (¬P  ¬Q) is the required PDNF. 

 

Principal Conjunctive Normal Form 
 
The dual of a minterm is called a Maxterm. For a given number of variables, the maxterm consists 
of disjunctions in which each variable or its negation, but not both, appears only once. Each of the 
maxterm has the truth value F for exactly one com-bination of the truth values of the variables. Now 
we define the principal conjunctive normal form. 
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For a given formula, an equivalent formula consisting of conjunctions of the max-terms only is 
known as its principle conjunctive normal form. This normal form is also called the product-of-sums 
canonical form.The method for obtaining the PCNF for a given formula is similar to the one 
described previously for PDNF. 
 

Example: Obtain the principal conjunctive normal form of the formula (¬P→R) (Q↔P) 
Solution: 

(¬P  R)  (Q  P ) 

⇔ [¬(¬P )  R]  [(Q  P )  (P  Q)] 

⇔ (P  R)  [(¬Q  P )  (¬P  Q)] 

⇔ (P  R  F )  [(¬Q  P  F )  (¬P  Q  F )] 

⇔ [(P  R)  (Q  ¬Q)]  [¬Q  P )  (R  ¬R)]  [(¬P  Q)  (R  ¬R)]  

⇔ (P  R  Q)  (P  R  ¬Q)  (P  ¬Q  R)  (P  ¬Q  ¬R) 

 (¬P  Q  R)  (¬P  Q  ¬R) 

⇔ (P  Q  R)  (P  ¬Q  R)  (P  ¬Q  ¬R)  (¬P  Q  R)  (¬P  Q  ¬R) 

which is required principal conjunctive normal form. 
 
Note: If the principal disjunctive (conjunctive) normal form of a given formula A containing n 
variables is known, then the principal disjunctive (conjunctive) normal form of ¬A will consist of 
the disjunction (conjunction) of the remaining minterms (maxterms) which do not appear in the 

principal disjunctive (conjunctive) normal form of A. From A ⇔ ¬¬A one can obtain the principal 

conjunctive (disjunctive) normal form of A by repeated applications of De Morgan‘s laws to the 
principal disjunctive (conjunctive) normal form of ¬A. 
 

Example: Find the PDNF form PCNF of S : P  (¬P  (Q  (¬Q  R))). 

Solution: 

 ⇔ P  (¬P  (Q  (¬Q  R))) 

⇔ P  (¬(¬P )  (Q  (¬(¬Q)  R))  

⇔ P  (P  Q  (Q  R))) 

⇔ P  (P  Q  R)  

⇔ P  Q  R 

which is the PCNF. 
Now PCNF of ¬S is the conjunction of remaining maxterms, so 

PCNF of ¬S : (P  Q  ¬R)  (P  ¬Q  R)  (P  ¬Q  ¬R)  (¬P  Q  R) 

 (¬P  Q  ¬R)  (¬P  ¬Q  R)  (¬P  ¬Q  ¬R) 

Hence the PDNF of S is 

¬(PCNF of ¬S) : (¬P  ¬Q  R)  (¬P  Q  ¬R)  (¬P  Q  R)  (P  ¬Q  ¬R) 

 ( P  ¬Q  R)  (P  Q  ¬R)  (P  Q  R) 
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Theory of Inference for Statement Calculus 
 
Definition: The main aim of logic is to provide rules of inference to infer a conclusion from 
certain premises. The theory associated with rules of inference is known as inference theory . 
 
Definition: If a conclusion is derived from a set of premises by using the accepted rules of 
reasoning, then such a process of derivation is called a deduction or a formal proof and the argument 
is called a valid argument or conclusion is called a valid conclusion. 
 
Note: Premises means set of assumptions, axioms, hypothesis. 
 
Definition: Let A and B be two statement formulas. We say that ‖B logically follows from A‖ or 
‖B is a valid conclusion (consequence) of the premise A‖ iff A  B is a tautology, that is A ⇒ B. 

We say that from a set of premises {H1, H2, · · · , Hm}, a conclusion C follows logically iff 

H1  H2  ...  Hm ⇒ C 

(1) 

www.Jntufastupdates.com 21



25 

 

Note: To determine whether the conclusion logically follows from the given premises, we use the 
following methods: 

 Truth table method 
 Without constructing truth table method. 

 

Validity Using Truth Tables 
 

Given a set of premises and a conclusion, it is possible to determine whether the 
conclusion logically follows from the given premises by constructing truth tables as follows. 
 

Let P1, P2, · · · , Pn be all the atomic variables appearing in the premises H1, H2, · · · , Hm and 

in the conclusion C. If all possible combinations of truth values are assigned to P1, P2, · · · , Pn and if 

the truth values of H1, H2, ..., Hm and C are entered in a table. We look for the rows in which all H1, 

H2, · · · , Hm have the value T. If, for every such row, C also has the value T, then (1) holds. That is, 
the conclusion follows logically. 
 

Alternatively, we look for the rows on which C has the value F. If, in every such row, at 

least one of the values of H1, H2, · · · , Hm is F, then (1) also holds. We call such a method a 
‗truth table technique‘ for the determination of the validity of a conclusion. 
 
 
Example: Determine whether the conclusion C follows logically from the premises 
 

H1 and H2.  

(a) H1 : P  Q H2 : P   C : Q 

(b) H1 : P  Q H2 : ¬P   C : Q 

(c) H1 : P  Q H2 : ¬(P  Q)   C : ¬P 

(d) H1 : ¬P H2 : P   Q  C : ¬(P  Q) 

(e) H1 : P  Q H2 : Q  C : P 
Solution: We first construct the appropriate truth table, as shown in table. 
 

P Q P  Q ¬P ¬(P  Q) P   Q 

T T T F F T 

T F F F T F 

F T T T T F 

F F T T T T 
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(a) We observe that the first row is the only row in which both the premises have the value T 
. The conclusion also has the value T in that row. Hence it is valid. 
 
In (b) the third and fourth rows, the conclusion Q is true only in the third row, but not in the 
fourth, and hence the conclusion is not valid. 
Similarly, we can show that the conclusions are valid in (c) and (d) but not in (e). 

Rules of Inference 
 

The following are two important rules of inferences. 
 

Rule P:  A premise may be introduced at any point in the derivation. 
 

Rule T: A formula S may be introduced in a derivation if S is tautologically implied by 
one or more of the preceding formulas in the derivation. 

 
Implication Formulas   

I1 : P  Q ⇒ P (simplification) 

I2 : P  Q ⇒ Q   

I3 : P ⇒ P  Q   

I4 : Q ⇒ P  Q   

I5 : ¬P ⇒ P  Q   

I6 : Q ⇒ P  Q   

I7 : ¬(P  Q) ⇒ P   

I8 : ¬(P  Q) ⇒ ¬Q   

I9 : P, Q ⇒ P  Q   
I

10 

: 
¬P, P  Q ⇒ Q (disjunctive syllogism) 

I
11 : P, P  Q ⇒ Q (modus ponens) 

I
12 : ¬Q, P  Q ⇒ ¬P (modus tollens) 

I
13 : P  Q, Q  R ⇒ P  R (hypothetical syllogism) 

I
14 : P  Q, P  R, Q  R ⇒ R (dilemma) 

Example: Demonstrate that R is a valid inference from the premises P  Q, Q  R, and P . 
Solution: 

{1} (1) P  Q Rule P 
{2} (2) P Rule P, 

{1, 2} (3) Q Rule T, (1), (2), and I13 

{4} (4) Q  R      Rule P 

{1, 2, 4} (5) R      Rule T, (3), (4), and I13 
Hence the result.  

www.Jntufastupdates.com 23



27 

 

Example: Show that R S follows logically from the premises C D, (C D)  ¬H, ¬H  (A  

¬B), and (A  ¬B)  (R  S). 

Solution: 

{1} (1) (C  D)  ¬H Rule P 

{2} (2) ¬H  (A  ¬B) Rule P 

{1, 2} (3) (C  D)  (A  ¬B) Rule T, (1), (2), and I13 

{4} (4) (A  ¬B)  (R  S) Rule P 

{1, 2, 4} (5) (C  D)  (R  S) Rule T, (3), (4), and I13 

{6} (6) C  D Rule P 

{1, 2, 4, 6}        (7) R  S Rule T, (5), (6), and I11 

Hence the result.   
 

Example: Show that S R is tautologically implied by (P Q) (P  R) (Q  S). 

 
Solution: 

 

{1} (1) P  Q Rule P 

{1} (2) ¬P  Q Rule T, (1) P  Q ⇔ ¬P  Q 

{3} (3) Q  S Rule P 

{1, 3} (4) ¬P  S Rule T, (2), (3), and I13 

{1, 3} (5) ¬S  P Rule T, (4), P  Q ⇔ ¬Q  ¬P 

{6} (6) P  R Rule P 

{1, 3, 6} (7) ¬S  R Rule T, (5), (6), and I13 

{1, 3, 6}    (8) S  R Rule T, (7) and P  Q ⇔ ¬P  Q 

Hence the result.   
 

Example: Show that R  (P  Q) is a valid conclusion from the premises P  Q, 

 
Q  R, P  M, and ¬M. 

 
Solution: 

 
{1} (1) P  M Rule P 

{2} (2) ¬M Rule P  

{1, 2} (3) ¬P Rule T, (1), (2), and I12  

{4} (4) P  Q Rule P  

{1, 2, 4} (5) Q Rule T, (3), (4), and I10  

{6} (6) Q  R Rule P  
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{1, 2, 4, 6} (7) R Rule T, (5), (6), and I11  

{1, 2, 4, 6}     (8) R  (P  Q) Rule T, (4), (7) and I9  
Hence the result.    

Example: Show I12 : ¬Q, P  Q ⇒ ¬P .  
Solution:     

{1} (1) P  Q Rule P  

{1} (2) ¬Q  ¬P Rule T, (1), and P  Q ⇔ ¬Q  ¬P  

{3} (3) ¬Q Rule P  

{1, 3} (4) ¬P Rule T, (2), (3), and I11  
Hence the result. 

 
Example: Test the validity of the following argument: 

 
‖If you work hard, you will pass the exam. You did not pass. Therefore, you did not work 
hard‖. 

 
Example: Test the validity of the following statements: 

 
‖If Sachin hits a century, then he gets a free car.  Sachin does not get a free car. 

 
Therefore, Sachin has not hit a century‖. 

 

Rules of Conditional Proof or Deduction Theorem 
 
We shall now introduce a third inference rule, known as CP or rule of conditional proof. 
Rule CP: If we can derive S from R and a set of premises, then we can derive R  S from the set 
of premises alone. 
Rule CP is not new for our purpose her because it follows from the equivalence 

www.Jntufastupdates.com 25



29 

 

(P  R)  S ⇔ P  (R  S) 

 
Let P denote the conjunction of the set of premises and let R be any formula. The above 

equivalence states that if R is included as an additional premise and S is derived from P  R, then 

R  S can be derived from the premises P alone. 
 
Rule CP is also called the deduction theorem and is generally used if the conclu-sion of the form 
R  S. In such cases, R is taken as an additional premise and S is derived from the given 
premises and R. 
 

Example: Show that R  S can be derived from the premises P  (Q  S), ¬R  P , and Q.  

                                                                                                                                    (Nov. 2011) 
 

Solution: Instead of deriving R  S, we shall include R as an additional premise and show S 
first. 

{1} (1) ¬R  P Rule P 

{2} (2) R Rule P (assumed premise) 

{1, 2} (3) P Rule T, (1), (2), and I10 

{4} (4) P  (Q  S) Rule P 

{1, 2, 4} (5) Q  S Rule T, (3), (4), and I11 

{6} (6) Q Rule P 

{1, 2, 4, 6} (7) S Rule T, (5), (6), and I11 

{1, 2, 4, 6} (8) R  S Rule CP 
 

Example: Show that P  S can be derived from the premises ¬P  Q, ¬Q  R, and R  S. 

Solution: We include P as an additional premise and derive S. 

{1} (1) ¬P  Q Rule P 

{2} (2) P Rule P (assumed premise) 

{1, 2} (3) Q Rule T, (1), (2), and I10 

{4} (4) ¬Q  R Rule P 

{1, 2, 4} (5) R Rule T, (3), (4), and I10 

{6} (6) R  S Rule P 

{1, 2, 4, 6} (7) S Rule T, (5), (6), and I11 

{1, 2, 4, 6} (8) P  S Rule CP 
Example: ‗If there was a ball game, then traveling was difficult. If they arrived on time, then 
traveling was not difficult. They arrived on time. Therefore, there was no ball game‘. Show that 
these statements constitute a valid argument. Solution: Let us indicate the statements as follows: 

P : There was a ball game. 
Q: Traveling was difficult. 
R: They arrived on time. 
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Hence, the given premises are P  Q, R  ¬Q, and R. The conclusion is ¬P . 
 

{1} (1) R  ¬Q Rule P 

{2} (2) R Rule P 

{1, 2} (3) ¬Q Rule T, (1), (2), and I11 

{4} (4) P  Q Rule P 

{4} (5) ¬Q  ¬P Rule T, (4), and P  Q ⇔ ¬Q  ¬P 

{1, 2, 4} (6) ¬P Rule T, (3), (5), and I11 
 
Example: By using the method of derivation, show that following statements con-stitute a valid 
argument: ‖If A works hard, then either B or C will enjoy. If B enjoys, then A will not work hard. 
If D enjoys, then C will not. Therefore, if A works hard, D will not enjoy. 
 
Solution: Let us indicate statements as follows: 

Given premises are P  (Q R), Q  ¬P , and S  ¬R. The conclusion is P  ¬S. 

We include P as an additional premise and derive ¬S. 

{1} (1) P Rule P (additional premise) 

{2} (2) P  (Q  R) Rule P 

{1, 2} (3) Q  R Rule T, (1), (2), and I11 

{1, 2} (4) ¬Q  R Rule T, (3) and P  Q ⇔ P  Q 

{1, 2} (5) ¬R  Q Rule T, (4), and P  Q ⇔ ¬Q  ¬P 

{6} (6) Q  ¬P Rule P 

{1, 2, 6} (7) ¬R  ¬P Rule T, (5), (6), and I13 

{1, 2, 6} (8) P  R Rule T, (7) and P  Q ⇔ ¬Q  ¬P 

{9} (9) S  ¬R Rule P 

{9} (10) R  ¬S Rule T, (9) and P  Q ⇔ ¬Q  ¬P 

{1, 2, 6, 9} (11) P  ¬S Rule T, (8), (10) and I13 

{1, 2, 6, 9} (12) ¬S Rule T, (1), (11) and I11 
 
Example: Determine the validity of the following arguments using propositional logic: 

‖Smoking is healthy. If smoking is healthy, then cigarettes are prescribed by physi- 
cians. Therefore, cigarettes are prescribed by physicians‖. (May-2012) 

Solution: Let us indicate the statements as follows:  

 P : Smoking is healthy.   

 Q: Cigarettes are prescribed by physicians.  

Hence, the given premises are P , P  Q. The conclusion is Q.  

{1} (1) P  Q Rule P  

{2} (2) P Rule P  
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{1, 2} (3) Q Rule T, (1), (2), and I11  
Hence, the given statements constitute a valid argument. 

 

Consistency of Premises 

 A set of formulas H1, H2, · · · , Hm is said to be consistent if their conjunction has the 

truth value T for some assignment of the truth values to the atomic variables appearing in H1, H2, 

· · · , Hm. 
If, for every assignment of the truth values to the atomic variables, at least one of the  

formulas H1, H2, · · · , Hm is false, so that their conjunction is identically false, then the formulas 

H1, H2, · · · , Hm are called inconsistent. 

Alternatively, a set of formulas H1, H2, · · · , Hm is inconsistent if their conjunction implies a 
contradiction, that is, 

H1  H2  · · ·  Hm ⇒ R  ¬R 

where R is any formula. 
 
Example: Show that the following premises are inconsistent: 

(1). If Jack misses many classes through illness, then he fails high school. 
(2). If Jack fails high school, then he is uneducated. 
(3). If Jack reads a lot of books, then he is not uneducated. 
(4). Jack misses many classes through illness and reads a lot of books. 

Solution: Let us indicate the statements as follows: 
E: Jack misses many classes through illness. 
S: Jack fails high school. 
A: Jack reads a lot of books. 
H: Jack is uneducated. 

The premises are E  S, S  H, A  ¬H, and E  A. 

{1} (1) E  S Rule P 

{2} (2) S  H Rule P 

{1, 2} (3) E  H Rule T, (1), (2), and I13 

{4} (4) A  ¬H Rule P 

{4} (5) H  ¬A Rule T, (4), and P  Q ⇔ ¬Q  ¬P 

{1, 2, 4} (6) E  ¬A Rule T, (3), (5), and I13 

{1, 2, 4} (7) ¬E  ¬A Rule T, (6) and P  Q ⇔ ¬P  Q 

{1, 2, 4} (8) ¬(E  A) Rule T, (7), and ¬(P  Q) ⇔ ¬P  ¬Q 

{9} (9) E  A Rule P 

{1, 2, 4, 9} (10) ¬(E  A)  (E  A) Rule T, (8), (9) and I9 
 

Thus, the given set of premises leads to a contradiction and hence it is inconsistent.  
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Example: Show that the following set of premises is inconsistent: ‖If the contract is valid, then 
John is liable for penalty. If John is liable for penalty, he will go bankrupt. If the bank will loan 
him money, he will not go bankrupt. As a matter of fact, the contract is valid, and the bank will 
loan him money.‖ 

Solution: Let us indicate the statements as follows:   

V : The contract is valid.   

L: John is liable for penalty.   

M: Bank will loan him money.   

B: John will go bankrupt.   
 

{1} (1) V  L Rule P 

{2} (2) L  B Rule P 

{1, 2} (3) V  B Rule T, (1), (2), and I13 

{4} (4) M  ¬B Rule P 

{4} (5) M  ¬M Rule T, (4), and P  Q ⇔ ¬Q  ¬P 

{1, 2, 4} (6) V  ¬M Rule T, (3), (5), and I13 

{1, 2, 4} (7) ¬V  ¬M Rule T, (6) and P  Q ⇔ ¬P  Q 

{1, 2, 4} (8) ¬(V  M) Rule T, (7), and ¬(P  Q) ⇔ ¬P  ¬Q 

{9} (9) V  M Rule P 

{1, 2, 4, 9} (10) ¬(V  M)  (V  M) Rule T, (8), (9) and I9 

Thus, the given set of premises leads to a contradiction and hence it is inconsistent. 
 

Indirect Method of Proof 
 

The method of using the rule of conditional proof and the notion of an inconsistent 
set of premises is called the indirect method of proof or proof by contradiction. 
 

In order to show that a conclusion C follows logically from the premises H1, H2, · · · , 

Hm, we assume that C is false and consider ¬C as an additional premise. If the new set of 
premises is inconsistent, so that they imply a contradiction. Therefore, the assump-tion that ¬C is 
true does not hold. 

Hence, C is true whenever H1, H2, · · · , Hm are true. Thus, C follows logically from 

the premises H1, H2, · · · , Hm. 
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Example: Show that ¬(P  Q) follows from ¬P  ¬Q. 

Solution: We introduce ¬¬(P Q) as additional premise and show that this additional premise 

leads to a contradiction. 
 

{1} (1) ¬¬(P  Q) Rule P (assumed) 

{1} (2) P  Q Rule T, (1), and ¬¬P ⇔ P 

{1} (3) P Rule T, (2), and I1 

{4} (4) ¬P  ¬Q Rule P 

{4} (5) ¬P Rule T, (4), and I1 

{1, 4} (6) P  ¬P Rule T, (3), (5), and I9 

Hence, our assumption is wrong. 

Thus, ¬(P  Q) follows from ¬P  ¬Q. 

 
Example: Using the indirect method of proof, show that 

P  Q, Q  R, ¬(P  R), P  R ⇒ R. 

Solution: We include ¬R as an additional premise. Then we show that this leads to a 
contradiction. 
 

{1} (1) P  Q Rule P 

{2} (2) Q  R Rule P 

{1, 2} (3) P  R Rule T, (1), (2), and I13 

{4} (4) ¬R Rule P (assumed) 

{1, 2, 4} (5) ¬P Rule T, (4), and I12 

{6} (6) P  R Rule P 

{1, 2, 4, 6} (7) R Rule T, (5), (6) and I10 

{1, 2, 4, 6} (8) R  ¬R Rule T, (4), (7), and I9 

Hence, our assumption is wrong. 
 
Example: Show that the following set of premises are inconsistent, using proof by contradiction 

P  (Q  R), Q  ¬P, S  ¬R, P ⇒ P  ¬S. 

Solution: We include ¬(P  ¬S) as an additional premise. Then we show that this leads to a 
contradiction. 

 ¬(P  ¬S) ⇔ ¬(¬P  ¬S) ⇔ P  S. 

 

{1} (1) P  (Q  R) Rule P  

{2} (2) P Rule P  

{1, 2} (3) Q  R Rule T, (1), (2), and Modus Ponens  

{4} (4) P  S Rule P (assumed)  

{1, 2, 4} (5) S Rule T, (4), and P  Q ⇒ P  
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{6} (6) S  ¬R Rule P  

{1, 2, 4, 6} (7)  ¬R Rule T, (5), (6) and Modus Ponens  

{1, 2, 4, 6} (8)  Q Rule T, (3), (7), and P  Q, ¬Q ⇒ P  

{9} (9)  Q  ¬P Rule P  

{1, 2, 4, 6} (10) ¬P   Rule T, (8), (9), and P  Q, ¬Q ⇒ P  

{1, 2, 4, 6} (11) P  ¬P Rule T, (2), (10), and P, Q ⇒ P  Q  

{1, 2, 4, 6} (12) F Rule T, (11), and P  ¬P ⇔ F  
Hence, it is proved that the given premises are inconsistent. 

 

The Predicate Calculus 
 

Predicate 
A part of a declarative sentence describing the properties of an object is called a 
predicate. The logic based upon the analysis of predicate in any statement is called 
predicate logic. 

Consider two statements: 
John is a bachelor 
Smith is a bachelor. 

In each statement ‖is a bachelor‖ is a predicate. Both John and Smith have the same 
property of being a bachelor. In the statement logic, we require two diff erent symbols to 
express them and these symbols do not reveal the common property of these statements. 
In predicate calculus these statements can be replaced by a single statement ‖x is a 
bachelor‖. A predicate is symbolized by a capital letters which is followed by the list of 
variables. The list of variables is enclosed in parenthesis. If P stands for the predicate ‖is 
a bachelor‖, then P (x) stands for ‖x is a bachelor‖,where x is a predicate variable. 

`The domain for P (x) : x is a bachelor, can be taken as the set of all human 
names. Note that P (x) is not a statement, but just an expression. Once a value is assigned 
to x, P (x) becomes a statement and has the truth value. If x is Ram, then P (x) is a 
statement and its truth value is true.  

 

Quantifiers 
 

Quantifiers: Quantifiers are words that are refer to quantities such as ‘some‘ or ‘all‘. 
Universal Quantifier: The phrase ‘forall‘ (denoted by ∀) is called the universal quantifier. 

For example, consider the sentence ‖All human beings are mortal‖. 
Let P (x) denote ‘x is a mortal‘. 

Then, the above sentence can be written as 

(∀x ∈ S)P (x) or ∀xP (x) 

where S denote the set of all human beings. 

∀x represents each of the following phrases, since they have essentially the same for all x 

For every x 
For each x. 

 

Existential Quantifier: The phrase ‘there exists‘ (denoted by ∃) is called the exis-tential 

quantifier. 
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For example, consider the sentence 

‖There exists x such that x
2
 = 5. 

This sentence can be written as 

(∃x ∈ R)P (x) or (∃x)P (x), 

where P (x) : x
2
 = 5. 

∃x represents each of the following phrases 

There exists an x 
There is an x 
For some x 
There is at least one x. 

 
Example: Write the following statements in symbolic form: 

(i). Something is good 
(ii). Everything is good 
(iii). Nothing is good 
(iv). Something is not good. 

Solution: Statement (i) means ‖There is atleast one x such that, x is good‖. 
Statement (ii) means ‖Forall x, x is good‖. 
Statement (iii) means, ‖Forall x, x is not good‖. 
Statement (iv) means, ‖There is atleast one x such that, x is not good. 
Thus, if G(x) : x is good, then 

statement (i) can be denoted by (∃x)G(x) 

statement (ii) can be denoted by (∀x)G(x) 

statement (iii) can be denoted by (∀x)¬G(x) 

statement (iv) can be denoted by (∃x)¬G(x). 

Example: Let K(x) : x is a man 
L(x) : x is mortal 
M(x) : x is an integer 
N(x) : x either positive or negative 

Express the following using quantifiers: 
 All men are mortal 
 Any integer is either positive or negative. 

Solution: (a) The given statement can be written as 
          for all x, if x is a man, then x is mortal and this can be expressed as 

(x)(K(x)  L(x)). 
(b) The given statement can be written as 
for all x, if x is an integer, then x is either positive or negative and this can be expressed 
as (x)(M(x)  N(x)). 
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Free and Bound Variables 

Given a formula containing a part of the form (x)P (x) or (∃x)P (x), such a part is called 

an x-bound part of the formula. Any occurrence of x in an x-bound part of the formula is 
called a bound occurrence of x, while any occurrence of x or of any variable that is not a 
bound occurrence is called a free occurrence. The smallest formula immediately 

following (∀x) or (∃x) is called the scope of the quantifier. 

Consider the following formulas: 
 

 (x)P (x, y) 
 (x)(P (x)  Q(x)) 

 (x)(P (x)  (∃y)R(x, y)) 

 (x)(P (x)  R(x))  (x)(R(x)  Q(x)) 

 (∃x)(P (x)  Q(x)) 

 (∃x)P (x)  Q(x). 

In (1), P (x, y) is the scope of the quantifier, and occurrence of x is bound occurrence, 
while the occurrence of y is free occurrence. 

 
In (2), the scope of the universal quantifier is P (x)  Q(x), and all concrescences of x are 
bound. 

 

In (3), the scope of (x) is P (x)  (∃y)R(x, y), while the scope of (∃y) is R(x, y). All 

occurrences of both x and y are bound occurrences. 
 

In (4), the scope of the first quantifier is P (x)  R(x) and the scope of the second is 
R(x)  Q(x). All occurrences of x are bound occurrences. 

 

In (5), the scope (∃x) is P (x)  Q(x). 

 

In (6), the scope of (∃x) is P (x) and the last of occurrence of x in Q(x) is free. 

 

Negations of Quantified Statements 

(i). ¬(x)P (x) ⇔ (∃x)¬P (x) 

(ii). ¬(∃x)P (x) ⇔ (x)(¬P (x)). 

Example: Let P (x) denote the statement ‖x is a professional athlete‖ and let Q(x) denote the 
statement ‖x plays soccer‖. The domain is the set of all people. 
(a). Write each of the following proposition in English. 

 (x)(P (x)  Q(x) 

 (∃x)(P (x)  Q(x)) 

 (x)(P (x)  Q(x)) 

(b). Write the negation of each of the above propositions, both in symbols and in words. 
   Solution: 

(a). (i). For all x, if x is an professional athlete then x plays soccer. 
‖All professional athletes plays soccer‖ or ‖Every professional athlete plays 

soccer‖. 
(ii). There exists an x such that x is a professional athlete and x plays soccer. 
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‖Some professional athletes paly soccer‖. 
(iii). For all x, x is a professional athlete or x plays soccer. 

‖Every person is either professional athlete or plays soccer‖. 
 

(b). (i). In symbol: We know that 

¬(x)(P (x)  Q(x)) ⇔ (∃x)¬(P (x)  Q(x)) ⇔ (∃x)¬(¬(P (x))  Q(x)) 

⇔ (∃x)(P (x)  ¬Q(x)) 

There exists an x such that, x is a professional athlete and x does not paly soccer. 
In words: ‖Some professional athlete do not play soccer‖. 

(ii). ¬(∃x)(P (x)  Q(x)) ⇔ (x)(¬P (x)  ¬Q(x)) 

In words: ‖Every people is neither a professional athlete nor plays soccer‖ or All people 
either not a professional athlete or do not play soccer‖. 

(iii). ¬(x)(P (x)  Q(x)) ⇔ (∃x)(¬P (x)  ¬Q(x)). 

In words: ‖Some people are not professional athlete or do not paly soccer‖. 
 

Inference Theory of the Predicate Calculus 
To understand the inference theory of predicate calculus, it is important to be famil-iar 

with the following rules: 
Rule US: Universal specification or instaniation 

(x)A(x) ⇒ A(y) 

From (x)A(x), one can conclude A(y). 
Rule ES: Existential specification 

(∃x)A(x) ⇒ A(y) 

From (∃x)A(x), one can conclude A(y). 

Rule EG: Existential generalization 

A(x) ⇒ (∃y)A(y) 

From A(x), one can conclude (∃y)A(y). 

Rule UG: Universal generalization 

A(x) ⇒ (y)A(y) 

From A(x), one can conclude (y)A(y). 
 
Equivalence formulas: 

E31 : (∃x)[A(x)  B(x)] ⇔ (∃x)A(x)  (∃x)B(x) 

E32 : (x)[A(x)  B(x)] ⇔ (x)A(x)  (x)B(x) 

E33 : ¬(∃x)A(x) ⇔ (x)¬A(x) 

E34 : ¬(x)A(x) ⇔ (∃x)¬A(x) 

E35 : (x)(A  B(x)) ⇔ A  (x)B(x) 

E36 : (∃x)(A  B(x)) ⇔ A  (∃x)B(x) 

E37 : (x)A(x)  B ⇔ (x)(A(x)  B) 

E38 : (∃x)A(x)  B ⇔ (x)(A(x)  B) 

E39 : A  (x)B(x) ⇔ (x)(A  B(x)) 
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E40 : A  (∃x)B(x) ⇔ (∃x)(A  B(x)) 

E41 : (∃x)(A(x)  B(x)) ⇔ (x)A(x)  (∃x)B(x) 

E42 : (∃x)A(x)  (x)B(X) ⇔ (x)(A(x)  B(X)). 

 
Example: Verify the validity of the following arguments: 

‖All men are mortal. Socrates is a man. Therefore, Socrates is mortal‖. 
or 

Show that (x)[H(x)  M(x)]  H(s) ⇒ M(s). 

Solution: Let us represent the statements as follows: 
H(x) : x is a man 
M(x) : x is a mortal 
s : Socrates 

Thus, we have to show that (x)[H(x)  M(x)]  H(s) ⇒ M(s). 

{1} (1) (x)[H(x)  M(x)] Rule P 

{1} (2) H(s)  M(s) Rule US, (1) 

{3} (3) H(s) Rule P 

{1, 3} (4) M(s) Rule T, (2), (3), and I11 
 
 
Example: Establish the validity of the following argument:‖All integers are ratio-nal numbers. 
Some integers are powers of 2. Therefore, some rational numbers are powers of 2‖. 

Solution: Let P (x) : x is an integer  

 R(x) : x is rational number  

 S(x) : x is a power of 2  

Hence, the given statements becomes  

 (x)(P (x)  R(x)), (∃x)(P (x)  S(x)) ⇒ (∃x)(R(x)  S(x)) 

Solution:   

{1} (1) (∃x)(P (x)  S(x)) Rule P 

{1} (2) P (y)  S(y) Rule ES, (1) 

{1} (3) P (y) Rule T, (2) and P  Q ⇒ P 

{1} (4) S(y) Rule T, (2) and P  Q ⇒ Q 

{5} (5) (x)(P (x)  R(x)) Rule P 

{5} (6) P (y)  R(y) Rule US, (5) 

{1, 5} (7) R(y) Rule T, (3), (6) and P, P  Q ⇒ Q 

{1, 5} (8) R(y)  S(y) Rule T, (4), (7) and P, Q ⇒ P  Q 

{1, 5} (9) (∃x)(R(x)  S(x)) Rule EG, (8) 
Hence, the given statement is valid. 
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Example: Show that (x)(P (x)  Q(x))  (x)(Q(x)  R(x)) ⇒ (x)(P (x)  R(x)). 

Solution: 

{1} (1) (x)(P (x)  Q(x)) Rule P 

{1} (2) P (y)  Q(y) Rule US, (1) 

{3} (3) (x)(Q(x)  R(x)) Rule P 

{3} (4) Q(y)  R(y) Rule US, (3) 

{1, 3} (5) P (y)  R(y) Rule T, (2), (4), and I13 

{1, 3} (6) (x)(P (x)  R(x)) Rule UG, (5) 

Example: Show that (∃x)M(x) follows logically from the premises 

    (x)(H(x)  M(x)) and (∃x)H(x). 

Solution: 

{1} (1) (∃x)H(x) Rule P 

{1} (2) H(y) Rule ES, (1) 

{3} (3) (x)(H(x)  M(x)) Rule P 

{3} (4) H(y)  M(y) Rule US, (3) 

{1, 3} (5) M(y) Rule T, (2), (4), and I11 

{1, 3} (6) (∃x)M(x) Rule EG, (5) 
Hence, the result. 

Example: Show that (∃x)[P (x)  Q(x)] ⇒ (∃x)P (x)  (∃x)Q(x). 

Solution: 

{1} (1) (∃x)(P (x)  Q(x)) Rule P 

{1} (2) P (y)  Q(y) Rule ES, (1) 

{1} (3) P (y) Rule T, (2), and I1 

{1} (4) (∃x)P (x) Rule EG, (3) 

{1} (5) Q(y) Rule T, (2), and I2 

{1} (6) (∃x)Q(x) Rule EG, (5) 

{1} (7) (∃x)P (x)  (∃x)Q(x) Rule T, (4), (5) and I9 

Hence, the result. 
Note: Is the converse true? 

{1} (1) (∃x)P (x)  (∃x)Q(x) Rule P  

{1} (2) (∃x)P (x) Rule T, (1) and I1  

{1} (3) (∃x)Q(x) Rule T, (1), and I1  

{1} (4) P (y) Rule ES, (2)  

{1} (5) Q(s) Rule ES, (3)  

www.Jntufastupdates.com 36



40 

 

Here in step (4), y is fixed, and it is not possible to use that variable again in step (5). 
Hence, the converse is not true. 

 

Example: Show that from (∃x)[F (x) S(x)]  (y)[M(y)  W (y)] and (∃y)[M(y)  ¬W (y)] the 

conclusion (x)[F (x)  ¬S(x)] follows. 
 

{1} (1) (∃y)[M(y)  ¬W (y)] Rule P 

{1} (2) [M(z)  ¬W (z)] Rule ES, (1) 

{1} (3) ¬[M(z)  W (z)] Rule T, (2), and ¬(P  Q) ⇔ P  ¬Q 

{1} (4) (∃y)¬[M(y)  W (y)] Rule EG, (3) 

{1} (5) ¬(y)[M(y)  W (y)] Rule T, (4), and ¬(x)A(x) ⇔ (∃x)¬A(x) 

{1} (6) (∃x)[F (x)  S(x)]  (y)[M(y)  W (y)]Rule P 

{1, 6} (7) ¬(∃x)[F (x)  S(x)] Rule T, (5), (6) and I12 

{1, 6} (8) (x)¬[F (x) S(x)] Rule T, (7), and ¬(x)A(x) ⇔ (∃x)¬A(x) 

{1, 6} (9) ¬[F (z)  S(z)] Rule US, (8) 

{1, 6} (10) ¬F (z)  ¬S(z) Rule T, (9), and De Morgan‘s laws 

{1, 6} (11) F (z)  ¬S(z) Rule T, (10), and P  Q ⇔ ¬P  Q 

{1, 6} (12) (x)(F (x)  ¬S(x)) Rule UG, (11) 
Hence, the result.  

Example: Show that (x)(P (x)  Q(x)) ⇒ (x)P (x)  (∃x)Q(x).   (May. 2012) 

Solution: We shall use the indirect method of proof by assuming ¬((x)P (x) (∃x)Q(x)) as an 

additional premise. 
 

{1} (1) ¬((x)P (x)  (∃x)Q(x)) Rule P (assumed) 

{1} (2) ¬(x)P (x)  ¬(∃x)Q(x) Rule T, (1) ¬(P  Q) ⇔ ¬P  ¬Q  

{1} (3) ¬(x)P (x) Rule T, (2), and I1  

{1} (4) (∃x)¬P (x) Rule T, (3), and ¬(x)A(x) ⇔ (∃x)¬A(x) 

{1} (5) ¬(∃x)Q(x) Rule T, (2), and I2  

{1} (6) (x)¬Q(x) Rule T, (5), and ¬(∃x)A(x) ⇔ (x)¬A(x) 

{1} (7) ¬P (y) Rule ES, (5), (6) and I12  

{1} (8) ¬Q(y) Rule US, (6)  

{1} (9) ¬P (y)  ¬Q(y) Rule T, (7), (8)and I9  

{1} (10) ¬(P (y)  Q(y)) Rule T, (9), and ¬(P  Q) ⇔ ¬P  ¬Q 

{11} (11) (x)(P (x)  Q(x)) Rule P  

{11} (12) (P (y)  Q(y)) Rule US  

{1, 11} (13) ¬(P (y)  Q(y))  (P (y)  Q(y)) Rule T, (10), (11), and I9  

{1, 11} (14) F Rule T, and (13)  
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which is a contradiction.Hence, the statement is valid. 
 

Example: Using predicate logic, prove the validity of the following argument: ‖Every 
husband argues with his wife. x is a husband. Therefore, x argues with his wife‖. 

 
Solution: Let P (x): x is a husband. 

 
Q(x): x argues with his wife. 

 

Thus, we have to show that (x)[P (x)  Q(x)]  P (x) ⇒ Q(y). 

{1} (1) (x)(P (x)  Q(x)) Rule P 

{1} (2) P (y)  Q(y) Rule US, (1) 

{1} (3) P (y) Rule P 

{1} (4) Q(y) Rule T, (2), (3), and I11 

Example: Prove using rules of inference 
Duke is a Labrador retriever. 
All Labrador retriever like to swim. 
Therefore Duke likes to swim. 

Solution: We denote 

 L(x): x is a Labrador retriever.   

 S(x): x likes to swim.   

 d: Duke.   

We need to show that L(d)  (x)(L(x)  S(x)) ⇒ S(d).  

{1} (1) (x)(L(x)  S(x)) Rule P  

{1} (2) L(d)  S(d) Rule US, (1)  

{2} (3) L(d) Rule P  

{1, 2} (4) S(d) Rule T, (2), (3), and I11.  
 

 
JNTUK Previous questions 

 

1. Test the Validity of the Following argument: ―All dogs are barking. Some animals are 
dogs. Therefore, some animals are barking‖. 

2. Test the Validity of the Following argument:  
―Some cats are animals. Some dogs are animals. Therefore, some cats are dogs‖. 

3. Symbolizes and prove the validity of the following arguments : 
(i) Himalaya is large. Therefore every thing is large. 
(ii) Not every thing is edible. Therefore nothing is edible. 

4. a) Find the PCNF of (~p r) ^(q p) ? 

b) Explain in brief about duality Law? 

c) Construct the Truth table for ~(~p^~q)? 
d) Find the disjunctive Normal form of ~(p  (q^r)) ? 

5. Define Well Formed Formula? Explain about Tautology with example? 

6. Explain in detail about the Logical Connectives with Examples? 
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7. Obtain the principal conjunctive normal form of the formula (┐P R)Λ(Q P) 
8. Prove that (x)P(x)Q(x)  (x)P(x)(x)Q(x). Does the converse hold? 

9. Show that from i) (x)(F(x) S(x)) (y)(M(y) W(y))   

ii) (y) (M(y) ┐W(y)) the conclusion (x)(F(x) ┐S(x)) follows. 

10. Obtain the principal disjunctive and conjunctive normal forms of (P (QR)) (┐P(┐Q┐R)). Is 
this formula a tautology? 

11. Prove that the following argument is valid: No Mathematicians are fools. No one who is not a fool 
is an administrator. Sitha is a mathematician. Therefore Sitha is not an administrator. 

12. Test the Validity of the Following argument: If you work hard, you will pass the exam. You did not 
pass. Therefore you did not work hard. 

13. Without constructing the Truth Table prove that (pq)q=pvq? 

14. Using normal forms, show that the formula Q(P┐Q)( ┐P┐Q) is a tautology. 
15. Show that (x) (P(x) Q(x))  (x)P(x) (x)Q(x) 

16. Show that  ┐(PQ) ( ┐P( ┐PQ)) ( ┐PQ) 

(PQ)( ┐P( ┐PQ)) (┐PQ) 

17. Prove that (x) (P(x) Q(x)) (x)P(x) (x)Q(x) 

18. Example: Prove or disprove the validity of the following arguments using the rules of  
       inference. (i) All men are fallible (ii) All kings are men (iii) Therefore, all kings are  
        fallible. 

      19. Test the Validity of the Following argument: 
―Lions are dangerous animals, there are lions, and therefore there are dangerous 

animals.‖ 
 

MULTIPLE CHOICE QUESTIONS 
 

1:  Which of the following propositions is tautology? 
 A.(p v q) q B. p v (q p) C.p v (p q) D.Both (b) & (c)  
 Option: C 
2:  Which of the proposition is p^ (~ p v q) is 
 A.A tautology B.A contradiction C.Logically equivalent to p ^ q D.All of above 
  Option: C 

3:  Which of the following is/are tautology? 
 A.a v b  b ^ c  B.a ^ b  b v c  C.a v b  (b  c) D.None of these  
 Option: B 
4:  Logical expression ( A^ B)  ( C' ^ A)  ( A ≡ 1) is 
 A.Contradiction B.Valid  C.Well-formed formula  D.None of these 
  Option: D 
5:  Identify the valid conclusion from the premises Pv Q, Q  R, P  M, ˥M 
 A.P ^ (R v R) B.P ^ (P ^ R) C.R ^ (P v Q) D.Q ^ (P v R)  
 Option: D 
6:  Let a, b, c, d be propositions. Assume that the equivalence a  (b v ˥b) and b  c hold. Then 
 truth value of the formula ( a ^ b)  ((a ^ c) v d) is always 
 A.True     B.False    C.Same as the truth value of a D.Same as the truth value of b 
 Option: A 
7:  Which of the following is a declarative statement? 

A. It's right B. He says  C.Two may not be an even integer D.I love you 
Option: B 

 8:  P  (Q  R) is equivalent to 
 A. (P ^ Q)  R  B.(P v Q)  R C.(P v Q)  ˥R  D.None of these 
 Option: A 
 9: Which of the following are tautologies? 
 A.((P v Q) ^ Q)  Q B.((P v Q) ^ ˥P)  Q C.((P v Q) ^ P)  P D.Both (a) & (b)  
 Option: D 

10:  If F1, F2 and F3 are propositional formulae such that F1 ^ F2  F3 and F1 ^ F2 F3 are both 
 tautologies, then which of the following is TRUE? 
 A.Both F1 and F2 are tautologies B.The conjuction F1 ^ F2 is not satisfiable 
 C.Neither is tautologies  D.None of these  
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 Option: B 

11.  Consider two well-formed formulas in propositional logic 

 F1 : P ˥P F2 : (P ˥P) v ( ˥P ) Which of the following statement is correct? 
 A.F1 is satisfiable, F2 is unsatisfiable B.F1 is unsatisfiable, F2 is satisfiable 
 C.F1 is unsatisfiable, F2 is valid D.F1 & F2 are both satisfiable 
 Option: C 
 12:  What can we correctly say about proposition P1 : (p v ˥q) ^ (q r) v (r v p) 
 A.P1 is tautology B.P1 is satisfiable  
 C.If p is true and q is false and r is false, the P1 is true 
 D.If p as true and q is true and r is false, then P1 is true 
 Option: C 
13:  (P v Q) ^ (P  R )^ (Q S) is equivalent to 

 A.S ^ R  B.S → R  C.S v R  D.All of above 

  Option: C 

 14:  The functionally complete set is 
 A.{ ˥, ^, v } B.{ , ^ } C.{ } D.None of these  
 Option: C 
 15:  (P v Q) ^ (P R) ^ (Q  R) is equivalent to  
 A.P B.Q C.R D.True = T 
 Option: C 
 16:  ˥(P  Q) is equivalent to 
 A.P ^ ˥Q B.P ^ Q C.˥P v Q D.None of these 
 Option: A 

17:  In propositional logic , which of the following is equivalent to p  q?  

 A.~p  q B.~p v q C.~p v~ q D.p q 
 Option: B 
18:  Which of the following is FALSE? Read ^ as And, v as OR, ~as NOT, as one way implication  
      and  as two way implication? 
 A.((x  y)^ x) y B.((~x y)^ ( ~x ^ ~y)) y C.(x  ( x v y)) D.((x v y) ( ~x v ~y)) 
 Option: D 
 19:  Which of the following well-formed formula(s) are valid? 
 A.((P  Q)^(Q  R))  (P  R) B.(P  Q) (˥P  ˥Q) 
 C.(P v (˥P v ˥Q)) P   D.((P  R) v (Q  R))  (P v Q} R) 
  Option: A 

 20:  Let p and q be propositions. Using only the truth table decide whether p  q does not imply p  
        ˥q is 
 A.True  B.False  C.None  D.Both A and B  
 Option: A 
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